Symmetry

Algebraic Test of Symmetry

x-axis: If replacing y with $-y$ produces an equivalent equation, then the graph is symmetric with respect to the x-axis.
\boldsymbol{y}-axis: If replacing x with $-x$ produces an equivalent equation, then the graph is symmetric with respect to the y-axis.

Origin: If replacing x with $-x$ and y with $-y$ produces an equivalent equation, then the graph is symmetric with respect to the origin.

Even and Odd Functions

If the graph of a function f is symmetric with respect to the y-axis, we say that it is an even
function. That is, for each x in the domain of f, $f(x)=f(-x)$.

If the graph of a function f is symmetric with respect to the origin, we say that it is an odd function. That is, for each x in the domain of f, $f(-x)=-f(x)$.

Transformations

Vertical Translation: $y=f(x) \pm b$

For $\mathrm{b}>0$,
the graph of $y=f(x)+b$ is the graph of $y=f(x)$ shifted $u p b$ units;
the graph of $y=f(x)-b$ is the graph of $y=f(x)$ shifted down b units.

Horizontal Translation: $y=f(x \pm d)$
the graph of $y=f(x-d)$ is the graph of $y=f(x)$ shifted right d units;
the graph of $y=f(x+d)$ is the graph of $y=f(x)$ shifted left d units.

Reflections

Across the x-axis: The graph of $y=-f(x)$ is the reflection of the graph of $y=f(x)$ across the x-axis.

Across the y-axis: The graph of $y=f(-x)$ is the reflection of the graph of $y=f(x)$ across the y-axis.

Vertical Stretching and Shrinking: $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{f}(\boldsymbol{x})$ The graph of $y=a f(x)$ can be obtained from the graph of $y=f(x)$ by
stretching vertically for $|a|>1$, or shrinking vertically for $0<|a|<1$

For $a<0$, the graph is also reflected across the x-axis.

Horizontal Stretching or Shrinking: $y=f(c x)$

The graph of $y=f(c x)$ can be obtained from the graph of $y=f(x)$ by
shrinking horizontally for $|c|>1$, or stretching horizontally for $0<|c|<1$.

For $\mathrm{c}<0$, the graph is also reflected across the y-axis.

Quadratic Formula

The solutions of $a x^{2}+b x+c=0, a \neq 0$ are given by

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

The Vertex of a Parabola

The vertex of the graph of $f(x)=a x^{2}+b x+c$ is

$$
\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)
$$

We calculate the
We substitute to
x-coordinate
find the y-coordinate

The Algebra of Functions

The Sums, Differences, Products, and Quotients of Functions
If f and g are functions and x is the domain of each function, then
$(f+g)(x)=f(x)+g(x)$
$(f-g)(x)=f(x)-g(x)$
$(f g)(x)=f(x) \cdot g(x)$
$(f / g)(x)=f(x) / g(x)$, provided $g(x) \neq 0$

Composition of Functions

The composition function $f \circ g$, the composition of f and g, is defined as

$$
(f \circ g)(x)=f(g(x))
$$

where x is in the domain of g and $g(x)$ is in the domain of f.

One-to-One Functions

A function f is one-to-one if different inputs have different outputs-that is,
if $a \neq b$, then $f(a) \neq f(b)$
Or a function f is one-to-one if when the outputs are the same, the inputs are the same-that is,

$$
\text { if } f(a)=f(b) \text {, then } a=b
$$

Horizontal-Line Test

If it is possible for a horizontal line to intersect the graph of a function more than once, then the function is not one-to-one and its inverse is not a function.

Obtaining a Formula for an Inverse

If a function f is one-to-one, a formula for its inverse can generally be found as follows:

1. Replace $f(x)$ with y.
2. Intercharge x and y.
3. Solve for y.
4. Replace y with $f^{-1}(x)$.

Exponential and Logarithmic Functions

The function $f(x)=a^{x}$, where x is a real number, $a>0$ and $a \neq 1$, is called the exponential function, base a.

We define $y=\log _{a} x$ as that number y such that $x=a^{y}$, where $x>0$ and a is a positive constant other than 1 .

Summary of the Properties of Logarithms

Product Rule: $\log _{a} M N=\log _{a} M+\log _{a} N$
Power Rule: $\quad \log _{a} M^{p}=p \cdot \log _{a} M$
Quotient Rule: $\quad \log _{a} \frac{M}{N}=\log _{a} M-\log _{a} N$
Change-of-Base: $\quad \log _{b} M=\frac{\log M}{\log b}$

Formula

Other Properties:

$$
\begin{array}{ll}
\log _{a} a=1 & \log _{a} 1=0 \\
\log _{a} a^{x}=x & a^{\log _{a} x}=x
\end{array}
$$

Solving Exponential and Logarithmic Equations

Base-Exponent Property

For any $a>0, a \neq 1$,
$a^{x}=a^{y} \leftrightarrow x=y$

Property of Logarithmic Equality

For any $M>0, N>0, a>0$, and $a \neq 1$,

$$
\log _{a} M=\log _{a} N \leftrightarrow M=N
$$

A Logarithm is an Exponent

$$
\log _{a} x=y \leftrightarrow x=a^{y}
$$

Polynomial Functions

Even and Odd Multiplicity

If $(x-c)^{k}, k \geq 1$, is a factor of a polynomial function $P(x)$ and $(x-c)^{k+1}$ is not a factor of $P(x)$ and :

- $\quad k$ is odd, then the graph crosses the x-axis at ($c, 0$);
- k is even, then the graph is tangent to the x-axis at $(c, 0)$

The Intermediate Value Theorem

For any polynomial function $P(x)$ with real coefficients, suppose that for $a \neq b, P(a)$ and $P(b)$ are of opposite signs. Then the function has a real zero between a and b.

The Remainder Theorem

If a number c is substituted for x in the polynomial $f(x)$, then the result $f(c)$ is the remainder that would be obtained by dividing $f(x)$ by $x-c$. That is, if $f(x)=(x-c) \cdot Q(x)+R$, then $f(c)=R$.

The Factor Theorem

For a polynomial $f(x)$, if $f(c)=0$, then $x-c$ is a factor of $f(x)$.

The Fundamental Theorem of Algebra

Every polynomial function of degree n, with $n \geq 1$, has at least one zero in the system of complex numbers.

Nonreal Zeros: $a+b i$ and $a-b i, b \neq 0$

If a complex number $a+b i, b \neq 0$, is a zero of a polynomial function $f(x)$ with real coefficients, then its conjugate, $a-b i$, is a also a zero.

Irrational Zeros: $a+c \sqrt{b}$ and $a-c \sqrt{b}$, b is not a perfect square
If $a+c \sqrt{b}$ and $a-c \sqrt{b}, b$ is not a perfect square, is a zero of a polynomial function $f(x)$ with rational coefficients, then its conjugate, $a-c \sqrt{b}$, is also a zero. For example, if $-3+5 \sqrt{2}$ is a zero of a polynomial function $f(x)$, with rational coefficients, then its conjugate, $-3-5 \sqrt{2}$, is also a zero.

The Rational Zeros Theorem

Let $P(x)=a_{n} x^{n}+a_{n-1} x^{n}+\cdots+a_{1} x+a_{0}$, where all the coefficients are integers. Consider a rational number denoted by p / q, where p and q are relatively prime. If p / q is a zero of $P(x)$, then p is a factor of a_{0} and q is a factor of a_{n}.

Ex. $\quad 3 x^{4}-11 x^{3}+10 x-4$
$\frac{\text { Possibilities for } p\left(a_{0}\right)}{\text { Possibilities for } q\left(a_{n}\right)}: \quad \frac{ \pm 1, \pm 2, \pm 4}{ \pm 1, \pm 3}$

Possibilities for p / q :
$1,-1,2,-2,4,-4, \frac{1}{3}, \frac{-1}{3}, \frac{2}{3}, \frac{-2}{3}, \frac{4}{3}, \frac{-4}{3}$

Quick Review Sheet Math 1314

Descartes' Rule of Signs

Let $P(x)$, written in descending or ascending order, be a polynomial function with real coefficients and a nonzero constant term. The number of positive real zeros of $P(x)$ is either:

1. The same as the number of variations of sign in $P(x)$, or
2. Less than the number of variations of sign in $P(x)$ by a positive even integer.

The number of negative real zeros of $P(x)$ is either:
3. The same as the number of variations of sign in $P(-x)$, or
4. Less than the number of variations of sign in $P(-x)$ by a positive even integer.

A zero of multiplicity m must be counted m times.

