Review Exercise Set 17

Exercise 1: Find the derivative of the given exponential function.

\[f(x) = e^{-2x+1} \]

Exercise 2: Find the derivative of the given exponential function.

\[h(x) = e^{2x^3-x} \]

Exercise 3: Find the derivative of the given exponential function.

\[s(x) = (8x^2 - 4x)^3 / (e^x + e^{-x}) \]
Exercise 4: The cost (in hundreds of dollars) to produce \(x \) units can be approximated with the cost function

\[
C(x) = \left[800 - 200(1.6)^{-1x + 6} \right]^{1/2}
\]

Find the marginal cost when the production level is at 10 units.

Exercise 5: Since 1950, the growth in world population (in millions) closely fits the exponential function defined by

\[
P(t) = 2600 e^{0.018t}
\]

where \(t \) is the number of years since 1950. Find the instantaneous rate of change in the world population in the year 2010.
Review Exercise Set 17 Answer Key

Exercise 1: Find the derivative of the given exponential function.

\[f(x) = e^{-2x+1} \]

\[f'(x) = e^{-2x+1} \cdot D_x(-2x + 1) \]

\[f'(x) = e^{-2x+1} \cdot (-2) \]

\[f'(x) = -2e^{-2x+1} \]

Exercise 2: Find the derivative of the given exponential function.

\[h(x) = e^{2x^3-x} \]

\[h'(x) = e^{2x^3-x} D_x(2x^3-x) \]

\[= e^{2x^3-x} \left(6x^2-1\right) \]

Exercise 3: Find the derivative of the given exponential function.

\[s(x) = (8x^2 - 4x)^3 / (e^x + e^{-x}) \]

Find derivative of numerator and denominator

\[D_x(8x^2 - 4x)^3 = 3 \cdot (8x^2 - 4x)^2 \cdot (16x - 4) \]

\[D_x(8x^2 - 4x)^3 = (48x - 12)(8x^2 - 4x)^2 \]

\[D_x(e^x + e^{-x}) = e^x D_x(x) + e^{-x} D_x(-x) \]

\[D_x(e^x + e^{-x}) = e^x(1) + e^{-x}(-1) \]

\[D_x(e^x + e^{-x}) = e^x - e^{-x} \]

Apply the quotient rule to \(s(x) \)

\[s'(x) = \frac{(e^x + e^{-x}) D_x(8x^2 - 4x)^3 - (8x^2 - 4x)^3 D_x(e^x + e^{-x})}{(e^x + e^{-x})^2} \]

\[= \frac{(e^x + e^{-x})(48x-12)(8x^2 - 4x)^2 - (8x^2 - 4x)^3 (e^x - e^{-x})}{(e^x + e^{-x})^2} \]

\[= \frac{(8x^2 - 4x)^2 \left[(e^x + e^{-x})(48x-12) - (8x^2 - 4x)(e^x - e^{-x}) \right]}{(e^x + e^{-x})^2} \]

\[= \frac{(8x^2 - 4x)^2 \left[52xe^x - 12e^x + 44xe^{-x} - 12e^{-x} - 8x^2 e^x + 8x^2 e^{-x} \right]}{(e^x + e^{-x})^2} \]
Exercise 4: The cost (in hundreds of dollars) to produce \(x \) units can be approximated with the cost function

\[
C(x) = \left[800 - 200(1.6)^{-1.1x + .9} \right]^{1/2}
\]

Find the marginal cost when the production level is at 10 units.

Find the derivative of \(C(x) \)

\[
C'(x) = \frac{1}{2} \cdot \left[800 - 200(1.6)^{-1.1x + .9} \right]^{-1/2} \cdot D_x(800 - 200(1.6)^{-1.1x + .9})
\]

\[
C'(x) = \frac{1}{2} \cdot \left[800 - 200(1.6)^{-1.1x + .9} \right]^{-1/2} \cdot [-200(1.6)^{-1.1x + .9} \cdot D_x(-1.1x + .9)]
\]

\[
C'(x) = \frac{1}{2} \cdot \left[800 - 200(1.6)^{-1.1x + .9} \right]^{-1/2} \cdot [-200(1.6)^{-1.1x + .9} \cdot (-1)]
\]

\[
C'(x) = \frac{1}{2} \cdot \left[800 - 200(1.6)^{-1.1x + .9} \right]^{-1/2} \cdot (20(1.6)^{-1.1x + .9})
\]

\[
C'(x) = (10(1.6)^{-1.1x + .9}) \cdot \left[800 - 200(1.6)^{-1.1x + .9} \right]^{1/2}
\]

Evaluate the derivative at \(x = 10 \)

\[
C'(10) = (10(1.6)^{-1.1(10) + .9}) \cdot \left[800 - 200(1.6)^{-1.1(10) + .9} \right]^{1/2}
\]

\[
C'(10) = \left(\frac{9.54}{609.18} \right) \cdot \left[800 - 190.82 \right]^{1/2}
\]

\[
C'(10) \approx 0.3865
\]

The marginal cost at a production level of 10 units is $38.65.

Exercise 5: Since 1950, the growth in world population (in millions) closely fits the exponential function defined by

\[
P(t) = 2600 \cdot e^{0.018t}
\]

where \(t \) is the number of years since 1950. Find the instantaneous rate of change in the world population in the year 2010.

Find the derivative of \(P(t) \)

\[
P'(t) = 2600 \cdot e^{0.018t} \cdot D_x(0.018t)
\]

\[
P'(t) = 2600 \cdot e^{0.018t} \cdot (0.018)
\]

\[
P'(t) \approx 46.8 \cdot e^{0.018t}
\]

Evaluate the derivative

\[
t = \text{number of years since 1950}
\]

\[
t = 2010 - 1950
\]

\[
t = 60
\]

\[
P'(60) = 46.8 \cdot e^{0.018(60)}
\]

\[
P'(60) = 46.8 \cdot e^{1.08}
\]

\[
P'(60) \approx 137.81
\]