Product-to-Sum and Sum-to-Product Identities

The product-to-sum identities are used to rewrite the product between sines and/or cosines into a sum or difference. These identities are derived by adding or subtracting the sum and difference formulas for sine and cosine that were covered in an earlier section.

For example, \(\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \) and \(\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \). If we were to subtract \(\sin(\alpha - \beta) \) from \(\sin(\alpha + \beta) \) we could derived the product-to-sum identity for the product of \(\cos \alpha \cos \beta \).

\[
\begin{align*}
\sin(\alpha + \beta) &= \sin \alpha \cos \beta + \cos \alpha \sin \beta \\
- \sin(\alpha - \beta) &= -[\sin \alpha \cos \beta - \cos \alpha \sin \beta]
\end{align*}
\]

\[
\begin{align*}
\sin(\alpha + \beta) - \sin (\alpha - \beta) &= 0 + 2 \cos \alpha \sin \beta \\
2 \cos \alpha \sin \beta &= \sin(\alpha + \beta) - \sin (\alpha - \beta)
\end{align*}
\]

Now multiply both sides of the equation by \(\frac{1}{2} \)

\[
\frac{1}{2} (2 \cos \alpha \sin \beta) = \frac{1}{2} [\sin(\alpha + \beta) - \sin (\alpha - \beta)]
\]

\[
\cos \alpha \sin \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin (\alpha - \beta)]
\]

<table>
<thead>
<tr>
<th>Product-to-Sum Identities</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)])</td>
</tr>
<tr>
<td>(\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)])</td>
</tr>
<tr>
<td>(\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)])</td>
</tr>
<tr>
<td>(\cos \alpha \sin \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)])</td>
</tr>
</tbody>
</table>

Example 1: Express the product of \(\cos 3x \cos 5x \) as a sum or difference.

Solution:

Identify which identity will be used

The given product is a product of two cosines so the \(\cos \alpha \cos \beta \) identity would be used.

\(\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)] \)
Example 1 (Continued):

Apply the product-to-sum identity for \(\cos \alpha \cos \beta \)

\[\alpha = 3x \text{ and } \beta = 5x \]

\[\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)] \]
\[\cos 3x \cos 5x = \frac{1}{2} [\cos(3x - 5x) + \cos(3x + 5x)] \]
\[\cos 3x \cos 5x = \frac{1}{2} [\cos(-2x) + \cos(8x)] \]

Apply the even/odd identity for \(\cos(-x) \)

\[\cos(-x) = \cos x \]

\[\cos 3x \cos 5x = \frac{1}{2} [\cos 2x + \cos 8x] \]

The purpose of the sum-to-product identities is the reverse of the product-to-sum identities. These identities are used to rewrite the sum or difference of sines and/or cosines in a product. If you wanted to verify the identity, we would use the product-to-sum identities.

Sum-to-Product Identities

\[
\begin{align*}
\sin \alpha + \sin \beta &= 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2} \\
\sin \alpha - \sin \beta &= 2 \sin \frac{\alpha - \beta}{2} \cos \frac{\alpha + \beta}{2} \\
\cos \alpha + \cos \beta &= 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2} \\
\cos \alpha - \cos \beta &= -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}
\end{align*}
\]

Example 2: Express the difference of \(\sin 2x - \sin x \) as a product.

Solution:

Identify which identity will be used

The given difference is the difference between two sines so the \(\sin \alpha - \sin \beta \) identity would be used.

\[\sin \alpha - \sin \beta = 2 \sin \frac{\alpha - \beta}{2} \cos \frac{\alpha + \beta}{2} \]
Example 2 (Continued):

Apply the sum-to-product identity for \(\sin \alpha - \sin \beta \)

\[\alpha = 2x \text{ and } \beta = x \]

\[\sin \alpha - \sin \beta = 2 \sin \frac{\alpha - \beta}{2} \cos \frac{\alpha + \beta}{2} \]

\[\sin 2x - \sin x = 2 \sin \frac{2x - x}{2} \cos \frac{2x + x}{2} \]

\[\sin 2x - \sin x = 2 \sin \frac{x}{2} \cos \frac{3x}{2} \]

Example 3: Verify the following identity.

\[\frac{\sin 4x + \sin 6x}{\sin 4x - \sin 6x} = -\tan 5x \cot x \]

Solution:

Apply the sum-to-product identity for \(\sin \alpha + \sin \beta \) to the numerator

\[\alpha = 4x \text{ and } \beta = 6x \]

\[\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2} \]

\[\sin 4x + \sin 6x = 2 \sin \frac{4x + 6x}{2} \cos \frac{4x - 6x}{2} \]

\[\sin 4x + \sin 6x = 2 \sin 5x \cos (-x) \]

\[\cos (-x) = \cos x \]

\[\sin 4x + \sin 6x = 2 \sin 5x \cos x \]
Example 3 (Continued):

Apply the sum-to-product identity for $\sin \alpha - \sin \beta$ to the denominator

$\alpha = 4x$ and $\beta = 6x$

$\sin \alpha - \sin \beta = 2 \sin \frac{\alpha - \beta}{2} \cos \frac{\alpha + \beta}{2}$

$\sin 4x - \sin 6x = 2 \sin \frac{4x - 6x}{2} \cos \frac{4x + 6x}{2}$

$\sin 4x - \sin 6x = 2 \sin (-x) \cos 5x$

$\sin (-x) = -\sin x$

$\sin 4x - \sin 6x = -2 \sin x \cos 5x$

Substitute the products into the identity

$\frac{\sin 4x + \sin 6x}{\sin 4x - \sin 6x} = -\tan 5x \cot x$

$\frac{2 \sin 5x \cos x}{-2 \sin x \cos 5x} = -\tan 5x \cot x$

Rearrange the factors, separate into individual fractions, and reduce

$\frac{2 \sin 5x \cos x}{-2 \cos 5x \sin x} = -\tan 5x \cot x$

$-\tan 5x \cot x = -\tan 5x \cot x$