Graphing Quadratic Functions

Recall that any function that can be written in the form of $f(x)=a x^{2}+b x+c$, where a, b, and c are real numbers and $a \neq 0$ are quadratic functions. The graph of a quadratic function yields the shape of a parabola. If the value of the " a " term is positive the parabola will open upward, whereas if the value is negative it opens downward.

The lowest point of a graph opening upward (the minimum), or the highest point of a graph opening downward (the maximum) is known as the vertex. An axis of symmetry can be determined by drawing a vertical line through the vertex of a parabola. This means that the equation for the axis of symmetry will be equal to the x value of the vertex.
For example, if the vertex of a parabola was (1,3), the formula for the axis of symmetry would be $x=1$. This is without regard to the direction, up or down, that the parabola opens.

Opens upward

Opens downward

As seen in earlier sections, the process of completing the square is a useful tool in finding noninteger values of quadratic equations, especially intercepts. When a quadratic equation of the form $f(x)=a x^{2}+b x+c$ is put through the process of completing the square it yields an equation of the form $f(x)=a(x-h)^{2}+k$. The conversion of the equation to this form will yield critical information about the equation's characteristics before you begin to graph it.
1.) The value of h is the distance left (if negative) or right (if positive) the graph translates from the standard position.
2.) The value of k is the distance up (if positive) or down (if negative) the graph translates from the standard position.
3.) The values of h and k, when put together as an ordered pair, give the vertex i.e. (h, k).
4.) The equation $x=h$ is the formula for the axis of symmetry.

The following example demonstrates how to find the following critical information of the equation:
a.) vertex
b.) axis of symmetry
c.) y intercept (if any)
d.) x intercepts (if any)

Example 1: Find the vertex, axis of symmetry, x-intercept(s), and y-intercept and graph the equation $f(x)=x^{2}+2 x-1$.

Solution:

Step 1: $\quad y$-intercept

In the form $f(x)=a x^{2}+b x+c,(0, c)$ is the y intercept. In this example, for this step, we need to rewrite the given function to the proper form to get this information.
$f(x)=x^{2}+2 x-1$
$f(x)=x^{2}+2 x+(-1)$
Therefore the y-intercept is: $(0,-1)$

Example 1 (Continued):

Step 2: Complete the square and write in the proper form.

$f(x)=x^{2}+2 x-1$
$f(x)=\left(x^{2}+2 x\right)-1$
$f(x)=\left(x^{2}+2 x+1\right)-1-1$
$f(x)=(x+1)^{2}-2$
$f(x)=(x-(-1))^{2}+(-2)$

Note: You should put the equation in this form so that you will not make any sign mistakes for the values of h and k.

Step 3: From step 2 the value of h is seen to be -1 , while k is equal to -2 . The following information can now be determined:
$f(x)=(x-h)^{2}+k$
$f(x)=(x-(-1))^{2}+(-2)$
Vertex: $(h, k)=(-1,-2)$

Axis of Symmetry: $[x=h]=[x=-1]$

Step 4: Find the x intercepts.

Recall that for all x intercepts, $\mathrm{y}=0$, and that for a function, $f(x)=\mathrm{y}$, therefore $f(x)=0$. Using the results of step 2 :

$$
\begin{aligned}
& f(x)=(x+1)^{2}-2 \\
& 0=(x+1)^{2}-2 \\
& 2=(x+1)^{2} \\
& \pm \sqrt{2}=\sqrt{(x+1)^{2}} \\
& \pm \sqrt{2}=(x+1) \\
& -1 \pm \sqrt{2}=x
\end{aligned}
$$

Therefore, the x intercepts for this example are:

$$
(-1-\sqrt{2}, 0) \text { and }(-1+\sqrt{2}, 0)
$$

Example 1 (Continued):

Step 5: Find the "reflection" of the y intercept and graph.

All of the points of a parabola have points that are reflections of each other across the AOS (Axis of Symmetry). Notice that the x-intercepts are a distance of from the x value of -1 , the AOS. To find the reflection of the y intercept, duplicate the y value of the point and find the x distance to the AOS then travel the same distance on the other side of the AOS. In this case, the y value of the reflection of the y intercept, $(0,-1)$ is -1 , so the reflected point will also have a y value of -1 . From the x value of the y intercept, 0 , it is a distance of 1 to the AOS value of -1 . The value that is the same distance on the other side of the $A O S$ is -2 . Therefore, the reflected point of the y intercept is $(-2,-1)$. Using all of this information, plot your points and graph.

Step 6: Graph.

