Slope-Intercept and Point-Slope Forms of a Linear Equation

To determine the equation of a line, you may use two variations of the general form of a line. These formulas are:

1) The Point-Slope Formula $\left(y-y_{1}\right)=m\left(x-x_{1}\right)$
2) The Slope-Intercept Formula $y=m x+b$

As the names imply the form that you use is dependant on the information you are given to start with.
Example 1: Find the equation of the line that has a slope of $\frac{1}{3}$ and contains the point $(2,-1)$.
Solution

Since the information given is a point and the slope, the point slope formula is used.

Step 1: Substitute the given into the formula.
Since $\mathrm{m}=\frac{1}{3}$ and $\mathrm{P}_{1}=(2,-1)$ then $\mathrm{x}_{1}=2$ and $\mathrm{y}_{1}=-1$.
$y-y_{1}=m\left(x-x_{1}\right)$
$y-(-1)=(x-2)$
$y+1=(x-2)$
$3(y+1)=1(x-2)$
$3 y+3=x-2$
$5=x-3 y$ or $x-3 y=5$
(This the standard formula of the line)
Step 2: Calculate \mathbf{P}_{2}.
Select any value you with for x or y and substitute it into the equation found in step 1. For this example y will equal 2.

$$
\begin{aligned}
& x-3 y=5 \\
& x-3(2)=5 \\
& x-6=6 \\
& x=11
\end{aligned}
$$

Therefore $\mathrm{P}_{2}=(11,2)$

Example 1 (continued):

Step 3: Verify.

When any two points of a line are substituted into the slope formula the slope of the line should be the answer. In this case, when P_{1} and P_{2} are substituted into the slope formula the answer should be $1 / 3$.

Since $\mathrm{P}_{1}=(2,-1)$ and $\mathrm{P}_{2}=(11,2)$ then $\mathrm{x}_{1}=2, \mathrm{x}_{2}=11, \mathrm{y}_{1}=-1$ and $\mathrm{y}_{2}=2$ then:

$$
\begin{aligned}
& \frac{Y_{2}-Y_{1}}{X_{2}-X_{1}}=\frac{1}{3} \\
& \frac{2-(-1)}{11-2}=\frac{1}{3} \\
& \frac{3}{9}=\frac{1}{3} \\
& \frac{1}{3}=\frac{1}{3}
\end{aligned}
$$

(The slopes are alike so the equation and P_{2} are correct)
Step 4: Graph

The slope intercept formula $y=m x+b$ is used when you know the slope of the line to be examined and the point given is also the y intercept $(0, b)$. In the formula, b represents the y value of the y intercept point.
Example 2: Find the equation of the line that has a slope of $2 / 3$ and a y intercept of $(0,4)$.
Solution

Step 1: Substitute the given into the formula.

Since the y intercept is $(0,4), \mathrm{b}=4$ and the slope, m , is given as $2 / 3$.

$$
\begin{aligned}
& y=m x+b \\
& y=\frac{2}{3} x+4 \\
& \frac{2}{3} x-y=-4
\end{aligned}
$$

(Note: The standard form does not allow fractional values, so you need to resolve this by multiplying by the LCD of 3).

$$
\begin{aligned}
& 3\left(\frac{2}{3} x-y\right)=(-4) 3 \\
& 2 x-3 y=-12
\end{aligned}
$$

(This is the calculated equation of the line.)

Step 2: Verify.

Plot 2 points using the formula. For this example $y_{1}=2$ and $y_{2}=-6$.

$$
\begin{array}{ll}
2 x-3 y=-12 & 2 x-3 y=-12 \\
\text { Let } y=2 & \text { Let } y=-6 \\
2 x-3(2)=-12 & 2 x-3(-6)=-12 \\
2 x-6=-12 & 2 x+18=-12 \\
2 x=-6 & 2 x=-30 \\
x=-3 & x=-15
\end{array}
$$

Therefore $P_{1}=(-3,2)$ and $P_{2}=(-15,-6)$

Example 2 (continued):

Step 2:

Next the x and y values are substituted into the slope formula.

$$
\begin{aligned}
& M=\frac{Y_{2}-Y_{1}}{X_{2}-X_{1}}=\frac{2}{3} \\
& \frac{-6-2}{-15-(-3)}=\frac{2}{3} \\
& \frac{-8}{-12}=\frac{2}{3} \\
& \frac{2}{3}=\frac{2}{3}
\end{aligned}
$$

Since the slope found using the two points is also $\frac{2}{3}$ the formula is correct

Step 3: Graph

