Review Exercise Set 9

Exercise 1: \quad Write the given linear equation in slope-intercept form. State the slope and y-intercept of the linear equation.

$$
7 x+3 y-8=0
$$

Exercise 2: Determine the slope and y-intercept in the given linear equation. Graph the line using the y-intercept and slope.

$$
7 x=5 y+20
$$

Exercise 3: Determine the slope and equation of the line in given graph.

Exercise 4: Write the equation of the line, with the given properties, in slope-intercept form.

$$
m=-\frac{1}{6} \text { and } p=(-6,5)
$$

Exercise 5: Write the equation of the line, with the given properties, in standard form.

$$
p=(-2,4) \text { and perpendicular to } y=\frac{1}{5} x+1
$$

Review Exercise Set 9 Answer Key

Exercise 1: \quad Write the given linear equation in slope-intercept form. State the slope and y-intercept of the linear equation.

$$
\begin{aligned}
7 x+3 y-8 & =0 \\
3 y & =-7 x+8 \\
y & =-\frac{7}{3} x+\frac{8}{3}
\end{aligned}
$$

slope $(\mathrm{m})=-\frac{7}{3}$ and the y -intercept $(0, b)=\left(0, \frac{8}{3}\right)$
Exercise 2: Determine the slope and y-intercept in the given linear equation. Graph the line using the y-intercept and slope.

$$
7 x=5 y+20
$$

First, rewrite the equation into slope-intercept form

$$
\begin{aligned}
7 x-20 & =5 y \\
\frac{7}{5} x-4 & =y \\
y & =\frac{7}{5} x-4
\end{aligned}
$$

slope $(m)=\frac{7}{5}$ and the y-intercept $(0, b)=(0,-4)$

Exercise 2 (Continued):
Now, plot the intercept and use the slope to plot additional points

$$
m=\frac{7}{5}=\frac{-7}{-5}=\frac{\text { rise }}{r u n}
$$

Exercise 3: Determine the slope and equation of the line in given graph.

From the graph determine the rise and run between the points

$$
\begin{aligned}
& \text { rise }=-3 \\
& \text { run }=1 \\
& m=\frac{\text { rise }}{\text { run }}=\frac{-3}{1}=-3
\end{aligned}
$$

Now substitute the slope and the y-intercept into the slope-intercept form of a line.

$$
\begin{aligned}
& m=-3 \text { and } y \text {-intercept }=(0,4) \\
& y=m x+b \\
& y=-3 x+4
\end{aligned}
$$

Exercise 4: Write the equation of the line, with the given properties, in slope-intercept form.

$$
m=-\frac{1}{6} \text { and } p=(-6,5)
$$

Since we are not given the y-intercept use the point-slope form of a line to determine the equation of the line. Point p will be (x_{1}, y_{1})

Exercise 4 (Continued):

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-5 & =-\frac{1}{6}(x-(-6)) \\
y-5 & =-\frac{1}{6}(x+6) \\
y-5 & =-\frac{1}{6} x-1 \\
y & =-\frac{1}{6} x-1+5 \\
y & =-\frac{1}{6} x+4
\end{aligned}
$$

Exercise 5: Write the equation of the line, with the given properties, in standard form.

$$
p=(-2,4) \text { and perpendicular to } y=\frac{1}{5} x+1
$$

First, determine the slope of the given line

$$
m_{1}=\frac{1}{5}
$$

Next, determine the perpendicular slope (m_{2})

$$
\begin{aligned}
m_{1} \times m_{2} & =-1 \\
\frac{1}{5} \times m_{2} & =-1 \\
m_{2} & =-5
\end{aligned}
$$

Now, substitute p as $\left(x_{1}, y_{1}\right)$ and m_{2} as m into the point-slope form to find the equation of the line

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)=(-2,4) ; m=-5 \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-4=-5[x-(-2)] \\
& y-4=-5(x+2) \\
& y-4=-5 x-10 \\
& y-4+5 x+10=0 \\
& 5 x+y+6=0
\end{aligned}
$$

