Review Exercise Set 14

Exercise 1: Write the first five terms of the sequence where \(n \) starts at 1.

\[a_n = n^2 - 1 \]

Exercise 2: Find the indicated term of the sequence.

\[a_n = (-1)^n(n - 2)(n + 1) \]

\[a_{23} = \]

Exercise 3: Write an expression for the \(n^{th} \) term of the given sequence.

\[\frac{1}{2}, \frac{4}{3}, \frac{9}{4}, \frac{16}{5}, \frac{25}{6}, \ldots \]

Exercise 4: Simplify the following factorial expression.

\[\frac{8!}{10!} \]
Exercise 5: Write the first five terms of the sequence defined by the recursion formula.

\[a_1 = 5; \ a_n = a_{n-1} + 4 \]

Exercise 6: Find the sum of the finite series.

\[\sum_{n=1}^{5} (n^2 - 1) \]
Review Exercise Set 14 Answer Key

Exercise 1: Write the first five terms of the sequence where \(n \) starts at 1.

\[a_n = n^2 - 1 \]

\[
\begin{align*}
 n = 1 & : a_1 = 1^2 - 1 = 1 - 1 = 0 \\
 n = 2 & : a_2 = 2^2 - 1 = 4 - 1 = 3 \\
 n = 3 & : a_3 = 3^2 - 1 = 9 - 1 = 8 \\
 n = 4 & : a_4 = 4^2 - 1 = 16 - 1 = 15 \\
 n = 5 & : a_5 = 5^2 - 1 = 25 - 1 = 24
\end{align*}
\]

The first five terms of the sequence are 0, 3, 8, 15, 24.

Exercise 2: Find the indicated term of the sequence.

\[a_n = (-1)^n(n - 2)(n + 1) \]

\[
\begin{align*}
 a_{23} &= (-1)^{23}(23 - 2)(23 + 1) \\
 &= (-1)(21)(24) \\
 &= -504
\end{align*}
\]

Exercise 3: Write an expression for the \(n \)th term of the given sequence.

\[\frac{1}{2}, -\frac{4}{3}, \frac{9}{4}, -\frac{16}{5}, \frac{25}{6}, \ldots \]

The signs on the terms are alternating between positive and negative so the expression for the \(n \)th term must have \(-1\) raised to an exponent as part of the formula.

\[
(-1)^n \frac{1}{2}, (-1)^n \frac{4}{3}, (-1)^n \frac{9}{4}, (-1)^n \frac{16}{5}, (-1)^n \frac{25}{6}, \ldots
\]

Since the first term is positive the exponent for the first term needs to be an even number. If we let \(n \) start at 1, then this makes our exponent \(n + 1 \).

\[
(-1)^{n+1} \frac{1}{2}, (-1)^{n+1} \frac{4}{3}, (-1)^{n+1} \frac{9}{4}, (-1)^{n+1} \frac{16}{5}, (-1)^{n+1} \frac{25}{6}, \ldots
\]
Exercise 3 (Continued):

The numerators of the fractions are all perfect squares

\[
(-1)^{i+1} \frac{1^2}{i+1}, (-1)^{2+1} \frac{2^2}{3}, (-1)^{3+1} \frac{3^2}{4}, (-1)^{4+1} \frac{4^2}{5}, (-1)^{5+1} \frac{5^2}{6},\ldots
\]

The denominators are all 1 more than the value of \(n\)

\[
(-1)^{i+1} \frac{1^2}{i+1}, (-1)^{2+1} \frac{2^2}{2+1}, (-1)^{3+1} \frac{3^2}{3+1}, (-1)^{4+1} \frac{4^2}{4+1}, (-1)^{5+1} \frac{5^2}{5+1},\ldots
\]

Replacing all of the values that are changing from term to term with \(n\) gives us the expression for the \(n\)th term

\[
a_n = (-1)^{n+1} \frac{n^2}{n+1}
\]

Exercise 4: Simplify the following factorial expression.

\[
\frac{8!}{10!} = \frac{8!}{10 \times 9 \times 8!} = \frac{1}{10 \times 9} = \frac{1}{90}
\]

Exercise 5: Write the first five terms of the sequence defined by the recursion formula.

\[a_1 = 5; \ a_n = a_{n-1} + 4\]

\[
\begin{array}{cccc}
n = 2 & n = 3 & n = 4 & n = 5 \\
a_2 = a_1 + 4 & a_3 = a_2 + 4 & a_4 = a_3 + 4 & a_5 = a_4 + 4 \\
\quad = a_1 + 4 & \quad = a_2 + 4 & \quad = a_3 + 4 & \quad = a_4 + 4 \\
\quad = 5 + 4 & \quad = 9 + 4 & \quad = 13 + 4 & \quad = 17 + 4 \\
\quad = 9 & \quad = 13 & \quad = 17 & \quad = 21 \\
\end{array}
\]

The first five terms of the sequence are 5, 9, 13, 17, and 21.
Exercise 6: Find the sum of the finite series.

\[
\sum_{n=1}^{5} (n^2 - 1) = (1^2 - 1) + (2^2 - 1) + (3^2 - 1) + (4^2 - 1) + (5^2 - 1)
\]

\[
= (1 - 1) + (4 - 1) + (9 - 1) + (16 - 1) + (25 - 1)
\]

\[
= 0 + 3 + 8 + 15 + 24
\]

\[
= 50
\]