Simplifying Variable Expressions

Definitions:

Variable terms – are terms that have an unknown value (a, b, x, …)
Constant terms – are terms that consist of only a known value (1, 4, -9, …)
Like terms – are terms with the same variable (unknown) part or constants

Examples:

- x^2 and $3x^2$ both of these terms have the same variable x^2
- $-2x$ and $7x$ both of these terms have the same variable x
- 9 and -3 both of these terms are constants

Definition:

Distributive Property of addition - allows you to multiply (distribute) a term to a group of terms within a set of parentheses.

$$a (b + c) = ab + ac$$

Example:

$$5(x + 6) = 5(x) + 5(6)$$
use the distributive property to multiply each term by 5
$$= 5x + 30$$

Definition:

Associative Property of addition – allows you to rearrange the order in which three or more terms are grouped and added.

$$(a + b) + c = a + (b + c)$$

Example:

$$(x + 5) + 3 = x + (5 + 3)$$
use the associative property to group our constant terms together
$$= x + 8$$
combine like terms
Definition:

Commutative Property of addition – allows you to change the order in which terms are added.

\[a + b = b + a \]

Example:

\[-5 + x^2 = x^2 + (-5) \quad \text{use the commutative property to switch the order of the terms} \]

\[= x^2 - 5 \]

Definition:

Addition Property of Zero – this property just shows that adding zero to any term will leave us with the same term.

\[a + 0 = 0 + a = a \]

Example:

\[8x + 6 - 8x = (8x - 8x) + 6 \quad \text{first use the associative property to group our like terms} \]

\[= 0 + 6 \quad \text{combine like terms} \]

\[= 6 \quad \text{use the addition property of zero} \]

Definition:

Inverse Property of Addition – shows that adding a term (“a”) and its additive inverse (“-a”) together will give us zero as a result.

\[a + (-a) = (-a) + a = 0 \]

Example:

\[5x + (-5x) = 0 \quad \text{adding 5x with its additive inverse of -5x gives us zero} \]
Comprehensive Examples:

Simplify:

\[8x + 4y - 8x + y = 8x - 8x + 4y + y \]

use the commutative property to rearrange the order of the terms

\[= (8x - 8x) + (4y + y) \]

use the associative property to group our like terms

\[= 0 + 5y \]

combine like terms.

\[= 5y \]

use the addition property of zero

Simplify:

\[4x^2 + 5x - 6x^2 - 2x + 1 = 4x^2 - 6x^2 + 5x - 2x + 1 \]

use the commutative property to rearrange the terms

\[= (4x^2 - 6x^2) + (5x - 2x) + 1 \]

use the associative property to group like terms

\[= -2x^2 + 3x + 1 \]

combine like terms

Definition:

Associative property of multiplication - allows you to rearrange the order in which three or more terms are grouped and multiplied.

\[(a \cdot b) \cdot c = a \cdot (b \cdot c) \]

Example: \[5(3x) = 5 \cdot (3 \cdot x) \]

rewrite the problem indicating the multiplication

\[= (5 \cdot 3) \cdot x \]

use the associative property to regroup the terms

\[= 15x \]

multiply

Definition:

Commutative property of multiplication – allows you to change the order in which the terms are multiplied.

\[a \cdot b = b \cdot a \]

Example: \[(10x)(3) = 3(10x) \]

use the commutative property to move the 3 to the front

\[= (3 \cdot 10) \cdot x \]

use the associative property to regroup the terms

\[= 30x \]

multiply
Definition:

Multiplication Property of One – shows that multiplying any term by one will give us the same term.

\[a \cdot 1 = 1 \cdot a = a \]

Example: \(1 \cdot (5x) = (1 \cdot 5)x \) use the associative property to regroup the terms multiply. We are left with the same term (5x).

Definition:

Inverse property of multiplication - shows that multiplying a term (“a”) and its reciprocal, or multiplicative inverse, (“1/a”) together will give us one as a result.

\[a \cdot 1/a = 1/a \cdot a = 1 \]

Example: \((3/2)(2x/3) = [(3/2) \cdot (2/3)]x\) use the associative property to regroup the factors
\[= 1 \cdot x \] use the inverse property of multiplication
\[= x \] use the multiplication property of one

Comprehensive Examples:

Simplify:

\[2(-x) = 2(-1 \cdot x) \]
\[= [2(-1)]x \] rewrite the problem use the associative property to regroup the factors multiply
\[= -2x \]

Simplify:

\[-1/2(4x) = [(-1/2) \cdot 4]x\] use the associative property to regroup the factors multiply
\[= -2x \]

Simplify:

\[(16x)(2) = (2)(16x)\] use the commutative property use the associative property multiply
\[= (2 \cdot 16)x \]
\[= 32x \]