Solving Quadratic Equations Using Factoring

Once polynomials have been factored, we may begin to solve for their critical points before they are graphed. These points would include such things as x and y intercepts and flex points. To accomplish this, the equation is first set equal to zero and then each of the factors are solved for the appropriate variable.

Example 1. Solve $x^2 + 5x + 6$ for x.

Step 1. Set the equation equal to zero.
$$x^2 + 5x + 6 = 0$$

Step 2. Factor the polynomial (see 4.6)
$$(x + 2)(x + 3) = 0$$

Step 3. Set each term equal to zero.
$$(x + 2) = 0 \text{ or } (x + 3) = 0$$

Step 4. Solve for the indicated variable.
$$x + 2 = 0 \text{ or } x + 3 = 0$$
$$x = -2 \text{ or } x = -3$$

The solution set for this problem is $\{ -2, -3 \}$

Example 2. Solve $x^2 - 5x + 6$ for x.

Step 1.
$$x^2 - 5x + 6 = 0$$

Step 2.
$$(x - 2)(x - 3) = 0$$

Step 3.
$$(x - 2) = 0 \text{ or } (x - 3) = 0$$

Step 4.
$$x - 2 = 0 \text{ or } x - 3 = 0$$
$$x = 2 \text{ or } x = 3$$
$$\{2, 3\}$$
Example 3. Solve $x^2 + 6x + 9$ for x.

Step 1. $x^2 + 6x + 9 = 0$

Step 2. $(x + 3)(x + 3) = 0$

Step 3. $x + 3 = 0$ or $x + 3 = 0$

Step 4. $x = -3$ or $x = -3$

$\{ -3 \}$

Note: The solutions for this equation are both -3. When the same solution is found a number of times it is said to have a zero of multiplicity however many times that value is repeated. In this example it is said that the equation has “a zero of -3 of multiplicity 2”.